

HAITIAN MARS III SERIES GLOBAL

TECHNOLOGY TO THE POINT

Application Fields Examples

TECHNOLOGY TO THE POINT.

CONSUMER GOODS

- O Plastics parts used in daily life
- O Highly efficient and cost effective

CONSUMER ELECTRONICS

- O Parts and components in the consumer electronics industry
- O Highly efficient solutions for high cavity applications

HOME APPLIANCE

- O Plastics parts in home appliance
- O Flexible, highly efficient and stable solution

AUTOMOTIVE

- O Plastics parts in the automotive industry
- O High efficient solution for a wide range of applications and process requirements

Mars Series Production Bases

 Production bases in Ningbo, Guangzhou and Wuxi Over 500,000 sqm production area

www.haitianpm.com

Development of Mars Series

MA servo technology

energy saving technology

Smart algorythms for a new machine performance

Dynamic⁺

More efficient and application oriented than ever before

Interactive⁺

Open integration with all common interfaces for automation and MES

www.haitianpm.com

Mechanical Design Improvements

HAITIAN

New graphite/steel bushings

providing better lubrication and lower lubrication consumption which improves the life of the clamping unit

MA1600 III

Optimised platen design

for centralised force transmission to the mold

Generous window design

made of PC glass for good light transmission and impact resistance

Injection and the main moving parts are supported by linear guides, with lower friction coefficient, higher operation accuracy, and less energy consumption

A

Non-welding technology

for power pipeline

570 global

A

GreenVantage

highly efficient and energy saving power unit

www.haitianpm.com

INJECTION UNIT

Linear Guides for Carriage & Injection Unit

Efficient Plasticizing Components

High Injection Speed

Maintenance-friendly

Injection Unit Linear Guides

- Linear guides for carriage and injection unit
- O Better acceleration and deceleration response
- Precise backpressure control

-

Injection Unit Efficient plasticizing components

- New designed plasticizing components
- Further improvement of the plasticization efficiency

Injection Unit

Change of standard C and D screw of machines between 5300-21000kN (exclusive of 21000kN D screw)

chrome screw

Variable pitch alloy screw

Note :

Welding alloy on the front half of the screw of the variable pitch alloy screw and the chromium plating treatment is changed to nitriding treatment. Mainly used in the logistics and civilian products industry to increase its wear resistance and service life.

Variable pitch alloy screw

Welding alloy on the front half of the edge top

Chrome plating \rightarrow Nitriding

Injection Unit Easy Maintenance

- O Swiveling injection unit as standard
 - At least 30% time saving for screw replacement
- MA600III-MA32000III: turn by manual
- MA3800III and above: turn automatically

Injection Unit Higher Injection Speed

Strong injection capacity featuring high injection pressure & speed

- O Shorter dry cycle time
- O Better solution for thin-walled parts
- Prevention from deformation through cooling
- Improved process range and improve process forming capabilities

Injection Unit Higher Injection Speed

Model	MAIII Injection speed (mm/s)	Model	MAIII Injection speed (mm/s)	Model	MAIII/eco Injection speed (mm/s)
MA600	155.4	MA7000	113.3	MA600	135.0
MA900	139.9	MA8000	102.1	MA900	119.3
MA1200	140.2	MA3000 MA10000	100 5	MA1200	114.4
MA1600	136.0	MA12000	100.0	MA1600	109.1
MA2000	135.3	MA14000	93.9	MA2000	109.9
MA2500	135.9	MA16000 MA18500	90.4	MA2500	109.2
MA2800	135.5	MA21000	88.8	MA2800	110.0
MA3200	120.4			MA3200	120.4
MA3800	127.5	MA24000	74.5	MA3800	104.4
MA4700	127.2	MA28000	71.4	MA4700	104.0
MA5300 MA6000	122.8	MA33000	65.4	MA5300 MA6000	102.9

Non-welding power pipelines

O Cleaner with less risk of oil leakage

CLAMPING UNIT

Optimized Platen Design

Enlarged Center Hole (Chinese Market only)

Optimized Platen Design

Enlargend Center Hole

Increased Rigidity

According to new chinese market standards

Hole Positioning of fixed platen

Model	MAIIS Center positioning hole	MAIII Center positioning hole	Note
60	100	100	Unchanged
90	125	100	
120	125	100	
160	125	125	Unchanged
200	160	125	
250	160	125	
280	160	125	
320	160	125	
380	160	160	Unchanged
470	200	160	
530	200	160	
600	200	160	
700	200	200	Unchanged
800	250	200	
900	250	200	
1000	250	200	
1200	250	200	
1300	250	200	
1400	250	200	
1600	315	250	
1850	315	250	
2100	315	250	
2400	315	250	
2800	315	250	
3300	315	250	

		~		
1	INEK	Y		

MOTION PLUS

... is the bundling of already established and new developments around intelligent motion control.

CONNECTIVITY PLUS

...the ability for open integration of all common interfaces, interaction with periphery and smart factories

Motion Plus At a Glance

Dynamic⁺ servo drive system

New power generation. strong, fine execution, high response

Efficient+ **Multi-Stage Control**

More flexibility for differnet applications

Open⁺ Linux platform

Freedom and maximum compatibility

Precise⁺ digital sensors

In Standard for all JU Series Optional for MA Series

High-Speed⁺ realtime fieldbus

Fast communication, rich data exposure

High Performance⁺ **Hydraulics**

Agile design, smooth, precise, energy efficient

Safety⁺ **Protection Concept**

High standard to protect operator and equipment

Longlife⁺ clamping unit design

Optimized clamping unit design

Intelligent algorithm for mold open/close Easier operation

Standard Mode of MAIIs machine

Intelligent Mode of MAIII machine

Intelligent algorithm for mold open/close Higher repeatability accuracy

Improved repeatability of the mold opening and closing by further optimizing the overall structure, oil circuit and programing

Intelligent algorithm for mold open/close Higher repeatability accuracy – test example

Repeatability Accuracy of 1200KN Mold Opening and Closing

Intelligent algorithm for mold open/close Shorter dry cycle time

	MA1200IIS	MA1200III
Mold close (s)	0.81	0.70
Mold open (s)	0.72	0.74
Cycle time (s)	1.65	1.55

Intelligent algorithm for mold open/close Higher repeatability accuracy – test example

Repeatability Accuracy of 5300KN Mold Opening and Closing

Full closed-loop control high injection repeatability accuracy

	MA4700IIS Standard Mode	MA4700III Full closed loop Mode
Max. part weight (g)	829.95	829.47
Min. part weight (g)	827.27	828.04
Max. weight deviation (g)	2.68	1.43
Repeatability (old standard)	0.324%	0.173%
Repeatability (new GB standard)	0.054%	0.038%

Part: plate (PS) Machine: MA4700

Full closed-loop control Stable injection for thick-wall parts

Part: acrylic cosmetic box Machine: MA3200

Diagram under full closed-loop mode

New servo-drive system

- New high-performance system
- O Self-development by Haitian
- Low noise and high efficiency
- Faster injection acceleration response
- III: 100ms, IIS: 200ms and doubled response!

Stability and Efficiency Improvement Oil Pump Efficiency

The comprehensive efficiency of the new pump system is improved as compared to the old one

Multi-Stage Dynamics Control

- Multi-PID control for more accurate movement of each \bigcirc executive components and movements.
- Apart from standard mode, we also offer various tailor-made \bigcirc modes to cope with particular applications such as thick-wall parts, deep cavity parts or thin-wall parts

....

* Currently only available for domestic market

MOTION PLUS ADVANTAGE

- Intelligent algorithm for mold open/close for more accurate positioning of mold open/close, thus easier for robots integration
- More smooth and stable mold open/close;
- More user-friendly and easy to operate, thus reduced requirement for operators;
- Better performance for thick wall parts with improved stability
- Better performance for thin wall parts with higher system response
- More accurate control of each executive parts
- Higher efficiency of oil pump and less energy consumption

More stable in movement, higher efficiency, less energy consumption and shorter dry cycle

CONNECTIVITY PLUS At a glance

Independent interoperability standard ensures the secure and reliable exchange data

Flexible⁺ integration

Easy device integration capabilities for efficient coordination of IMM and periphery

Open⁺ integration

Full integration of automation cells – free choise for the customer

Business⁺ to Machine

Incorporate into the customer's vertical management system

Broad⁺ **Data compatibility**

Ability to transform heterogeneous data from edge computers

Smart Control

Standard "GO Factory" wireless communication interface Easy access to the "GO Factory" cloud platform

MES System

	4833	5	91419800 2	330	8 91 3 09	19175 - 166	4 90	0413157	8.42				-28	init:	(GREET	T X 30	sea 🔪	NT WEIST			86	野智慧	тг	战时
* •	(CHAR)		SELEAS en	e s	🚊 BRAR	10	Ø 2018	42 0	S 30.										1	-		and the second diversion		
我计信息												IL	前限							NR	314		RETE	
() +:164		-		-		€ 85#			NULL NO.	10.4	1		-	-	2	HUNE FAR		1488 1488 159 159 159 159 159 159 159 159 159 159					SHE STRO	я 5
			anwa						8.8.6 B			5	1		~	1	Real	1 al	1.1	11		191	- 65 P.	
11820	399362	LAN	_Hittel	Rel - S	RHRD	100.00	58755	2.144	tini-w	1012	e nidelii			U		*	E.A.W	1	1	A	ATEL 1			0.02
10.5.E	1.14	+17	> THead Internet	±0 75	2000	auto:	6.4758	75	238-4-15	10 <u>#</u> #	1944	1		100			Elementaria Elementaria		2 1	950	13098			20
Read of the second s	12.00	20.0	57/0-4-4 Pt 10	11	148	4815	6 11-08	- B-	100 4 4 12	10 II 10 II	22410	1000		1.20	1910 C	-	15 282 PP 84	1	1.1	/ A.	Proceeding 1	10	-2.05	NEH .
	100.00		0.609		·	ant -	8.438	- A	Colorado -	N. 24	Concerning of	12	-	1	144	2			644	- Artes	-		17	16
100.005	CORD INC.		- Litter	ant a	de la section	and and a		110-10	0.512.0			Q.	28.00	-	24	Re.	-			100	e de		:40	n::S
0.012		123	378-4417: 10	+ 11	ALC: N	2411	CAN	100	275-4-12	N 17	THE OWNER OF	影響	Y E		The second			100	er en e	100	70 Y		শ	ike n
12437	1.3.8	-	278 9 4 65 10	==		17314	5.5388	-	201-4-12	11 1.1		調査	を留い				Sec. Com	1.00	a ma				1440	225
DB(#	×9.0	45%	\$79,24 01 10	33	298	49934	2.415.00	\$2.5	2) 8-4-12	N #8	(1))=		10000	1			-	10		1		ACT	-39	nch 💷
品調言味	6					nika:	iê.							-			- 1					-	ার	100
												-	200 C	-	and the second			ABHPS		1	-	1	43.54	+ east
2	-110		9 HOARI	20	10		132			2		100			1.000			and the R	-	Les La	a state			
THE	211-4-10	E D T	ri (ensataris	34	110		TIORN		1.1	1110-01	-	100			CO.	57 N		-1013		-				L
28105	2013-4-3 é	া বা	1 119 8 B.T	1.08	-96.09												100							
e haisb		10° 40	e omaterio	a 4	and	<u>λ</u> 8		16	129	4 0	iat.			Size .							F			
6dB	1219 4 9 8	10 E	S LEBUSE	ttile	264	25	2015-1	61 5 54	9 8	8.8.9	1925	1.00		1	1999	-	1 3	and the second		and the		1 - 1 - 1	all set	
ENUM	2016-4-3 B	10 E)	5 264M(P	94 ³	849	9.2	2015-1	H2 8 10	1	8.2.4	684			1					1					
									ST. The address				1						1					

Thank You!

TECHNOLOGY TO THE POINT

